Strong spatial mixing (SSM) is an important quantitative notion of correlation decay for Gibbs distributions arising in statistical physics, probability theory, and theoretical computer science. A longstanding conjecture is that the uniform distribution on proper $q$-colorings on a $\Delta$-regular tree exhibits SSM whenever $q \ge \Delta+1$. Moreover, it is widely believed that as long as SSM holds on bounded-degree trees with $q$ colors, one would obtain an efficient sampler for $q$-colorings on all bounded-degree graphs via simple Markov chain algorithms. It is surprising that such a basic question is still open, even on trees, but then again it also highlights how much we still have to learn about random colorings. In this paper, we show the following: (1) For any $\Delta \ge 3$, SSM holds for random $q$-colorings on trees of maximum degree $\Delta$ whenever $q \ge \Delta + 3$. Thus we almost fully resolve the aforementioned conjecture. Our result substantially improves upon the previously best bound which requires $q \ge 1.59\Delta+\gamma^*$ for an absolute constant $\gamma^* > 0$. (2) For any $\Delta\ge 3$ and girth $g = \Omega_\Delta(1)$, we establish optimal mixing of the Glauber dynamics for $q$-colorings on graphs of maximum degree $\Delta$ and girth $g$ whenever $q \ge \Delta+3$. Our approach is based on a new general reduction from spectral independence on large-girth graphs to SSM on trees that is of independent interest. Using the same techniques, we also prove near-optimal bounds on weak spatial mixing (WSM), a closely-related notion to SSM, for the antiferromagnetic Potts model on trees.
翻译:强空间混合(SSM)是概率论、统计物理学和理论计算机科学中的基本定量相关概念。长期以来,人们假设当 $q \ge \Delta+1$ 时,$\Delta$ 阶树上合适的 $q$-着色的均匀分布满足 SSM。此外,人们普遍认为只要在具有 $q$ 种颜色的有界度数树上 SSM 成立,就可以通过简单的马尔科夫链算法得到 $q$-着色的高效采样方法。令人惊讶的是,即使在树上,这样一个基本的问题仍然没有得到解决,但同时这也凸显了我们对随机染色问题还有多少需要了解。在本文中,我们证明了以下结论:(1)对于任意 $\Delta \ge 3$,当 $q \ge \Delta + 3$ 时,最大度为 $\Delta$ 的树上的随机 $q$-着色满足 SSM。因此,我们几乎得到了上述猜想的完整解答。我们的结果显著超过了以前最好的结果,后者需要 $q \ge 1.59\Delta+\gamma^*$,其中 $\gamma^* > 0$ 是一个绝对常数。(2)对于任意 $\Delta\ge 3$ 和环 $g = \Omega_\Delta(1)$,当 $q \ge \Delta+3$ 时,我们证明了 $q$-着色的高斯动力学在最大度为 $\Delta$ 和环 $g$ 的图上的最优混合数。我们的方法是基于一个新的通用约化,从大环图的谱独立性到树上的 SSM,该约化在独立的首次出现时具有重要的独立兴趣。使用相同的技术,我们还就树上反铁磁 Potts 模型的弱空间混合 (WSM) 提出了接近最优的界。