项目名称: 具有临界指数的Schrodinger-Poisson系统的解
项目编号: No.11301313
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 李宇华
作者单位: 山西大学
项目金额: 23万元
中文摘要: 本项目主要以Schrodinger-Poisson系统为研究对象,在临界增长的情况下,利用变分方法和偏微分方程中的一些著名的结果,研究Schrodinger-Poisson系统解的存在性与多解性,得到一些较好的结果。 近年来,非线性偏微分方程解的研究受到了广泛关注,这些方程是物理学、生态学、经济学等诸多领域中一些问题的数学模型,有着丰富的应用背景。因为缺乏一定的紧嵌入,临界增长的偏微分方程是目前较难解决的问题之一。Schrodinger-Poisson系统是偏微分方程中的一类典型模型。它在量子电动力学中,描述电磁场中带电粒子之间的相互作用,在半导体理论、在非线性光学以及等离子体物理学中,都有着深刻的背景。因此,本项目的研究对微分方程和物理学的发展都有着促进作用。
中文关键词: 薛定谔-泊松;非局部;临界增长;基尔霍夫;
英文摘要: Schrodinger-Poisson system with critical exponent is studied by using variational method and some famous results of partial differential equation. As the main model, the existence and multiplicity of solutions to Schrodinger- Poisson system will be obtained. Solutions to nonlinear partial differential equations have been the attentioned problems since compactness is the key. Recent years, nonlinear partial differential equations were widespread concerned. These equations are mathematical models of physics, ecology and economics, etc. They have profound applied background. Solutions to nonlinear partial differential equations with critical exponent have been the attentioned problem since lacking compcat imbedding. Schrodinger- Poisson system is a typical model of nonlinear equations. Schrodinger-Poisson system describes the interaction between a charge particle interacting with the electro- magnetic field in quantum electrodynamics, and also in semiconductor theory, in nonlinear optics and in plasma physics. Hence, the study of this project will advance the development of differential equation and physics.
英文关键词: Schrodinger-Poisson;nonlocal;critical growth;Kirchhoff;