*《Connections between Support Vector Machines, Wasserstein distance and gradient-penalty GANs》A Jolicoeur-Martineau, I Mitliagkas [Mila] (2019)

成为VIP会员查看完整内容
25

相关内容

生成对抗网络(GAN)是Ian Goodfellow及其同事在2014年设计的一类机器学习框架。两个神经网络在游戏中相互竞争(从博弈论的角度讲,通常但并非总是以零和博弈的形式)。 在给定训练集的情况下,该技术将学习生成具有与训练集相同的统计数据的新数据。 例如,受过照片训练的GAN可以生成新照片,这些新照片至少对人类观察者而言表面上看起来真实,具有许多现实特征。 尽管GAN最初是作为一种形式的无监督学习模型提出的,但它也已被证明可用于半监督学习,完全监督学习和强化学习。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
31+阅读 · 2020年3月3日
专知会员服务
127+阅读 · 2020年1月16日
专知会员服务
90+阅读 · 2019年12月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
72+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
11+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
自定义损失函数Gradient Boosting
AI研习社
11+阅读 · 2018年10月16日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文笔记】ICLR 2018 Wasserstein自编码器
专知
19+阅读 · 2018年6月29日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
25+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
5+阅读 · 2018年1月16日
VIP会员
相关VIP内容
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
31+阅读 · 2020年3月3日
专知会员服务
127+阅读 · 2020年1月16日
专知会员服务
90+阅读 · 2019年12月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
72+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
11+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
自定义损失函数Gradient Boosting
AI研习社
11+阅读 · 2018年10月16日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文笔记】ICLR 2018 Wasserstein自编码器
专知
19+阅读 · 2018年6月29日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
25+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
微信扫码咨询专知VIP会员