项目名称: Schrodinger-Poisson方程的若干问题研究
项目编号: No.11201083
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 朱红波
作者单位: 广东工业大学
项目金额: 22万元
中文摘要: 量子力学、半导体理论及非线性光学等理论物理学科中出现的Schr?dinger-Poisson方程驻波解的研究,往往转化成对一类带有耦合项的椭圆型方程的研究。本项目主要研究非线性Schr?dinger-Poisson方程中一类有物理意义的解-束缚态(bound state)的存在性及相关性质。我们拟解决的问题是:1.当位势函数非径向对称,非线性项具有较一般形式时,方程解的渐近性态及参数对方程解的存在性的影响。2. 如果位势函数在无穷远处的极限为零,特别是快速衰减到零时,方程束缚态的存在性以及解的集中性态。拟通过这些问题的研究,更加深刻地了解位势函数的衰减行为、参数取值范围对方程解的存在性的影响。
中文关键词: 薛定谔泊松系统;半经典态;束缚态;集中行为;变分方法
英文摘要: The study of standing waves in quantum mechanics,semiconductor theory and in nonlinear optics leads to the study of nonlinear elliptic diffierent equation with a coupling term. The main aim of this project is to consider the existence of solutions with physical meaning(bound state) and its related properties. We want to solve the following two questions: 1. If the potentials are non radial symmetry, we are going to concern the asymptotic profile of bound state of Schrodinger-Poisson equation with much more nonlinearity and how the range of parameters affect the existence of solutions. 2. If the potentials decay to zero at infinity, especially the fast decay, and we want to study the existence of bound state and the concentration phenomenon of the solutions.
英文关键词: Schrodinger-Poisson system;semi-classical states;bound states;concentration behavior;variational methods