项目名称: 变分方法与非线性偏微分方程中若干问题的研究
项目编号: No.11301374
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 郑有泉
作者单位: 天津大学
项目金额: 22万元
中文摘要: 本项目将以几类非线性偏微分方程和方程组为研究对象, 利用临界点理论, 研究正解, 变号解的存在性和多重性, 极小能量解的存在性等问题,例如:Schrodinger-KdV方程组, Maxwell-Dirac方程组和Klein-Gordon-Dirac方程组。 这些不仅在微分方程的变分和拓扑方法中有重要意义, 同时, 在几何, 物理中也有现实的应用价值。我们还考虑Chern-Simons-Higgs理论中出现的一类具有指数非线性项的方程, 利用渐近分析技巧和拓扑方法, 研究解(比如爆破解)的存在性和多重性问题。通过对这类变分方法很棘手的问题的研究, 对我们理解次临界和临界甚至超临界的椭圆方程至关重要。
中文关键词: Nirenberg问题;Schrodinger方程;非局部偏微分方程;变分方法;
英文摘要: In this program, we consider some classes of nonlinear partial differential equations. Using critical point theory, we study the existence and multiplicty of positive and sign-changing solutions, the existence of least energy solutions. For example, Schrodinger-KdV systems, Maxwell-Dirac systems and Klein-Gordon-Dirac systems. These problems not only have important significance in variational and topological methods for differential equations, but also have realistic significance in geometry and physics. We also consider a class of equations with exponential nonliearity from Chern-Simons-Higgs theory. Using asymptotic analysis and topological methods, we study the existence and multiplicity of solutions(for example, blowing-up solutions). These problems are crucial for us in the understanding of subcritcal, critical and supercrical elliptic equations.
英文关键词: Nirenberg problem;Schrodinger equations;nonlocal PDEs;variational method;