Inferring the parameters of ordinary differential equations (ODEs) from noisy observations is an important problem in many scientific fields. Currently, most parameter estimation methods that bypass numerical integration tend to rely on basis functions or Gaussian processes to approximate the ODE solution and its derivatives. Due to the sensitivity of the ODE solution to its derivatives, these methods can be hindered by estimation error, especially when only sparse time-course observations are available. We present a Bayesian collocation framework that operates on the integrated form of the ODEs and also avoids the expensive use of numerical solvers. Our methodology has the capability to handle general nonlinear ODE systems. We demonstrate the accuracy of the proposed method through a simulation study, where the estimated parameters and recovered system trajectories are compared with other recent methods. A real data example is also provided.
翻译:在许多科学领域中,从噪声观测中推断普通微分方程(ODEs)的参数是一个重要的问题。目前,绕过数值积分的大多数参数估计方法都倾向于依靠基函数或高斯过程来近似ODE解及其导数。由于ODE解对其导数的敏感性,这些方法可能会受到估计误差的影响,特别是当只有稀疏的时间序列观测数据可用时。我们提出了一个贝叶斯余项框架,该框架操作ODE的积分形式,也避免了昂贵的数值求解器。我们的方法具有处理一般非线性ODE系统的能力。通过模拟研究,我们证明了所提出方法的准确性,其中将估计的参数和恢复的系统轨迹与其他最新方法进行了比较。我们还提供了一个实际数据示例。