In this paper, we propose a mesh-free numerical method for solving elliptic PDEs on unknown manifolds, identified with randomly sampled point cloud data. The PDE solver is formulated as a spectral method where the test function space is the span of the leading eigenfunctions of the Laplacian operator, which are approximated from the point cloud data. While the framework is flexible for any test functional space, we will consider the eigensolutions of a weighted Laplacian obtained from a symmetric Radial Basis Function (RBF) method induced by a weak approximation of a weighted Laplacian on an appropriate Hilbert space. Especially, we consider a test function space that encodes the geometry of the data yet does not require us to identify and use the sampling density of the point cloud. To attain a more accurate approximation of the expansion coefficients, we adopt a second-order tangent space estimation method to improve the RBF interpolation accuracy in estimating the tangential derivatives. This spectral framework allows us to efficiently solve the PDE many times subjected to different parameters, which reduces the computational cost in the related inverse problem applications. In a well-posed elliptic PDE setting with randomly sampled point cloud data, we provide a theoretical analysis to demonstrate the convergent of the proposed solver as the sample size increases. We also report some numerical studies that show the convergence of the spectral solver on simple manifolds and unknown, rough surfaces. Our numerical results suggest that the proposed method is more accurate than a graph Laplacian-based solver on smooth manifolds. On rough manifolds, these two approaches are comparable. Due to the flexibility of the framework, we empirically found improved accuracies in both smoothed and unsmoothed Stanford bunny domains by blending the graph Laplacian eigensolutions and RBF interpolator.
翻译:本文提出了一种基于谱方法的无网格数值方法,用于求解在未知流形上的椭圆偏微分方程,该流形由随机采样的点云数据确定。该PDE求解器被制定为一种谱方法,其中测试函数空间是拉普拉斯算子的主导特征函数的张成空间,这些函数的近似来自于点云数据。虽然该框架对任何测试函数空间都很灵活,但我们将考虑一个加权拉普拉斯算子的特征解,该算子是通过对适当 Hilbert 空间上的加权拉普拉斯算子进行弱逼近得到的对称径向基函数 (RBF) 方法的结果。特别是,我们考虑一个测试函数空间,该空间编码数据的几何形状,但不需要我们识别和使用点云的采样密度。为了获得更准确的展开系数近似值,我们采用二阶切空间估计方法,在估计切向导数的 RBF 插值器的准确性方面进行了改进。这种谱框架使我们能够高效地多次求解受不同参数限制的 PDE,从而减少了相关反演问题应用中的计算成本。在随机采样的点云数据上的良好定位椭圆偏微分方程环境中,我们提供了理论分析,以证明所提出的求解器随着样本大小的增加而收敛。我们还报告了一些数值研究,证明了谱求解器在简单流形和未知粗糙表面上的收敛性。我们的数值结果表明,在光滑的流形上,所提出的方法比基于图拉普拉斯的求解器更准确。在粗糙的流形上,这两种方法相当。由于该框架的灵活性,我们发现通过混合图拉普拉斯特征解和 RBF 插值器在平滑和非平滑的 Stanford bunny 领域中可以获得更好的准确度。