This paper introduces a new accurate model for periodic fractional optimal control problems (PFOCPs) using Riemann-Liouville (RL) and Caputo fractional derivatives (FDs) with sliding fixed memory lengths. The paper also provides a novel numerical method for solving PFOCPs using Fourier and Gegenbauer pseudospectral methods. By employing Fourier collocation at equally spaced nodes and Fourier and Gegenbauer quadratures, the method transforms the PFOCP into a simple constrained nonlinear programming problem (NLP) that can be treated easily using standard NLP solvers. We propose a new transformation that largely simplifies the problem of calculating the periodic FDs of periodic functions to the problem of evaluating the integral of the first derivatives of their trigonometric Lagrange interpolating polynomials, which can be treated accurately and efficiently using Gegenbauer quadratures. We introduce the notion of the {\alpha}th-order fractional integration matrix with index L based on Fourier and Gegenbauer pseudospectral approximations, which proves to be very effective in computing periodic FDs. We also provide a rigorous priori error analysis to predict the quality of the Fourier-Gegenbauer-based approximations to FDs. The numerical results of the benchmark PFOCP demonstrate the performance of the proposed pseudospectral method.
翻译:本文提出了一种新的准确模型,用于使用Riemann-Liouville(RL)和Caputo分数导数对具有滑动固定记忆长度的周期分数最优控制问题(PFOCPs)进行建模。本文还提供了一种使用傅里叶和格根鲍尔赝谱方法求解PFOCPs的新的数值方法。通过在等距节点处采用傅里叶插值和傅里叶与格根鲍尔求积法,该方法将PFOCP转化为简单的带约束非线性规划问题(NLP),可以使用标准NLP求解器轻松处理。我们提出了一种新的变换,该变换大大简化了计算周期函数的周期FD的问题,使其变成了计算其三角拉格朗日插值多项式的一阶导数的积分的问题,这可以使用Gegenbauer求积法来计算。我们引入了基于傅里叶和格根鲍尔赝谱逼近的{\ alpha}阶分数积分矩阵,其指数为L,这在计算周期FD方面证明了其非常有效。我们还提供了一个严格的预先误差分析,以预测傅里叶-格根鲍尔基于逼近FD的近似质量。基准PFOCP的数值结果展示了所提出的赝谱方法的表现。