Dereverberation is often performed directly on the reverberant audio signal, without knowledge of the acoustic environment. Reverberation time, T60, however, is an essential acoustic factor that reflects how reverberation may impact a signal. In this work, we propose to perform dereverberation while leveraging key acoustic information from the environment. More specifically, we develop a joint learning approach that uses a composite T60 module and a separate dereverberation module to simultaneously perform reverberation time estimation and dereverberation. The reverberation time module provides key features to the dereverberation module during fine tuning. We evaluate our approach in simulated and real environments, and compare against several approaches. The results show that this composite framework improves performance in environments.
翻译:偏差往往直接在反动音频信号上进行,而没有声学环境的知识。反动时间,T60是一个重要的声学因素,反映了反动会如何影响信号。在这项工作中,我们提议在利用环境的关键声学信息的同时进行偏差,更具体地说,我们开发一种联合学习方法,使用一个复合的T60模块和一个单独的反动模块,同时进行反动时间估计和反动。反动时间模块在微调期间为脱动模块提供了关键特征。我们评估了我们在模拟和真实环境中的方法,并与几种方法进行比较。结果显示,这一复合框架改善了环境的性能。