项目名称: 分数次椭圆型方程解的集中现象
项目编号: No.11501166
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 刘忠原
作者单位: 河南大学
项目金额: 18万元
中文摘要: 本项目主要研究分数次椭圆型方程解的集中现象。主要研究目标:研究分数次Neumann问题极小能量解的渐近行为,从而得到极小能量解的集中性质的精确刻画,构造分数次Neumann问题的多峰解,构造临界分数次Hénon型方程的波峰解。到目前为止,关于这些问题的研究结果还很少。已有的理论框架很难直接应用到这种类型方程。为此,我们需要发展新的数学工具,提出新的解决问题的思路和技巧。我们的研究将会极大地丰富变分学和椭圆型偏微分方程的现有理论。
中文关键词: 半线性椭圆型方程;变分方法;Neumann边值问题;临界指标
英文摘要: In this project, we mainly study concentration phenomena of solutions for the fractional elliptic equations. The main objective is to investigate the existence and asymptotic behavior of the least energy solutions, thus to obtain the exact characterization of concentration property of the least energy solutions and to construct multi-peak solutions for fractional Neumann problems, to construct peak solutions for the critical fractional Hénon type equations. Up to now, there are few results on these problems. It is very difficult to apply the existing theoretical framework directly to these equations. To do this, we need to develop new mathematical tools and present new idea and techniques in order to solve these problems. Our research will greatly enrich the existing theory of calculus of variation and elliptic partial differential equations.
英文关键词: Semilinear Elliptic Equations;Variational Methods;Neumann Boundary Value Problem;Critical Exponent