We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.
翻译:我们研究在知识图表上回答问题的问题,集中研究能够用单一事实来解答的简单问题。 通过将问题直接分解为实体检测、实体连接、关系预测和证据组合,我们探索简单而有力的基线。 在受欢迎的简单问题数据集中,我们发现基本的LSTMS和GRUs加上一些超自然学数据可以产生接近现代状态的美感,而不使用神经网络的技术也表现得相当好。 这些结果表明,文献中建议的尖端深层次学习技术的收益相当微小,而以前的一些模型也表现出不必要的复杂性。