Person re-identification (\textit{re-id}) refers to matching pedestrians across disjoint yet non-overlapping camera views. The most effective way to match these pedestrians undertaking significant visual variations is to seek reliably invariant features that can describe the person of interest faithfully. Most of existing methods are presented in a supervised manner to produce discriminative features by relying on labeled paired images in correspondence. However, annotating pair-wise images is prohibitively expensive in labors, and thus not practical in large-scale networked cameras. Moreover, seeking comparable representations across camera views demands a flexible model to address the complex distributions of images. In this work, we study the co-occurrence statistic patterns between pairs of images, and propose to crossing Generative Adversarial Network (Cross-GAN) for learning a joint distribution for cross-image representations in a unsupervised manner. Given a pair of person images, the proposed model consists of the variational auto-encoder to encode the pair into respective latent variables, a proposed cross-view alignment to reduce the view disparity, and an adversarial layer to seek the joint distribution of latent representations. The learned latent representations are well-aligned to reflect the co-occurrence patterns of paired images. We empirically evaluate the proposed model against challenging datasets, and our results show the importance of joint invariant features in improving matching rates of person re-id with comparison to semi/unsupervised state-of-the-arts.


翻译:个人再身份(\ textit{ re- id}) 是指将行人匹配到不相连但非重叠的摄像视图中。 匹配这些行人进行重大视觉变异的最为有效的方法就是寻找可靠、可真实描述受访者的变异性特征。 多数现有方法都是以监督方式展示的, 以便通过在通信中依赖贴标签的配对图像来产生歧视性特征。 但是, 配对图像的注释在劳动中成本极高, 因而在大型网络照相机中不切实际。 此外, 要在相机视图中寻找可比的表达方式, 需要一个灵活的模型来应对图像的复杂分布。 在这项工作中, 我们研究一对相图像之间的共同反复统计模式模式, 并提议跨过General Aversarial 网络( Cross- GAN), 以便以不受监督的方式学习用于交叉图像展示的联合分布。 考虑到一对人图像, 拟议的模型包括将配对相的变式自动编码编码成不同的潜在变量, 拟议的交叉视图调整以缩小图像的分布差异差异, 并对照对比对比图像的图像, 和对比对比的图像的对比结构图层, 对比对比对比的模型将我们所研究的图像的对比的模型的模型, 对比对比的模型的模型将对比的模型将对比的模型将展示的模型将对比到对比到对比性图像的模型, 与对比性模型的对比性模型将展示性模型将对比性图像的对比性图像的对比性模型将对比性图像的模型将对比性模型与对比性模型与对比性图像的对比性图像的模型与对比性比。

10
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Metric Attack for Person Re-identification
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员