Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a single-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, \ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.


翻译:个人再识别(重新标识)不受监督的域适应(UDA)方法旨在将标签源数据的知识从标签源数据再开发知识转移到未标签的目标数据。 虽然取得了巨大成功,但大多数都只使用单一来源域的数据进行模型预培训,使丰富的标签数据没有得到充分利用。为了充分利用标签数据,我们将多源概念引入UDA人再识别(重新标识)领域,因为培训中使用了多个源数据集。然而,由于领域差距,仅仅将不同数据集合并只会带来有限的改进。在本文件中,我们试图从两个角度来解决这一问题,即域特定视图和域融合观点。提出了两个建设性的模块,它们彼此兼容。首先,探索了一个校正域特定批次标准化模块,以同时减少特定域的特点,提高个人特性。第二,一个基于图形革命网络的多域信息聚合(MDIF)模块,该模块将域域域域域间距离降至最低,而没有使用不同域内可比较性能分析方法,通过不同域间可比较的域间比值技术,通过不同域间分析法,实现了任何可比较的域域域内变的域。

14
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
行人再识别中的迁移学习
计算机视觉战队
11+阅读 · 2017年12月20日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
Top
微信扫码咨询专知VIP会员