High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
翻译:最近的研究表明,进化神经网络可以学习具有歧视性的空间特征,这些特征在高光谱数据的解释中起着极其重要的作用。然而,这些方法大多忽视了超光谱数据独特的光谱空间特征。此外,大量未贴标签的数据仍然是一个未开采的金矿,用于高效使用数据。因此,我们提议将基因对抗网络(GANs)和概率图形模型结合起来,用于高光谱图像分类。具体地说,我们使用光谱空间生成器和歧视器来确定超光谱立方体的土地覆盖类别。此外,为了利用大量未贴标签的数据,我们采用了一个有条件的随机字段来改进GANs产生的初步分类结果。使用两个共同研究的数据集获得的实验结果表明,拟议框架利用少量的培训数据实现了鼓励分类准确性。