Freezing of gait (FOG) is a common and debilitating gait impairment in Parkinson's disease. Further insight into this phenomenon is hampered by the difficulty to objectively assess FOG. To meet this clinical need, this paper proposes an automated motion-capture-based FOG assessment method driven by a novel deep neural network. Automated FOG assessment can be formulated as an action segmentation problem, where temporal models are tasked to recognize and temporally localize the FOG segments in untrimmed motion capture trials. This paper takes a closer look at the performance of state-of-the-art action segmentation models when tasked to automatically assess FOG. Furthermore, a novel deep neural network architecture is proposed that aims to better capture the spatial and temporal dependencies than the state-of-the-art baselines. The proposed network, termed multi-stage spatial-temporal graph convolutional network (MS-GCN), combines the spatial-temporal graph convolutional network (ST-GCN) and the multi-stage temporal convolutional network (MS-TCN). The ST-GCN captures the hierarchical spatial-temporal motion among the joints inherent to motion capture, while the multi-stage component reduces over-segmentation errors by refining the predictions over multiple stages. The experiments indicate that the proposed model outperforms four state-of-the-art baselines. Moreover, FOG outcomes derived from MS-GCN predictions had an excellent (r=0.93 [0.87, 0.97]) and moderately strong (r=0.75 [0.55, 0.87]) linear relationship with FOG outcomes derived from manual annotations. The proposed MS-GCN may provide an automated and objective alternative to labor-intensive clinician-based FOG assessment. Future work is now possible that aims to assess the generalization of MS-GCN to a larger and more varied verification cohort.
翻译:刺青(FOG) 是帕金森氏病中常见且削弱功能的冰冻行为缺陷。 更深入地了解这一现象由于难以客观地评估FOG而受阻。 为满足这一临床需要,本文件提议采用由新型深神经网络驱动的自动运动抓取FOG评估方法。 自动的FOG评估可以作为一种行动分解问题, 时间模型的任务是识别和在时间上将FOG部分在未剪接的运动捕捉试验中进行本地化。 本文更仔细地审视了在受命自动评估FOG时最先进的行动分解模型的性能。 此外, 提出了一个新的深神经网络架构,目的是更好地捕捉空间和时间依赖性FOG的评估。 拟议的网络,称为多阶段空间-时空图卷动网络(MS-GCN), 将空间- G- 平流图组合网络(ST-GCN) 和多阶段的时变图(MS-TCN) 和多阶段化网络(MS-CN- TCN) 正在从高级的轨道流流化分析, 预估测到多阶段的内流- 流流- GOLOOOD(ODOOOO) 预测, 预测到多级的多级变变。 预测, 预测, 预测: 预测: 预测: 预测- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- 。