Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.


翻译:传感器、可磨损装置网络和Things(IoT)装置互联网生成的大量数据强调,由于需要边缘计算和许可证(数据存取)问题,需要先进的模型技术来利用分散数据的时空结构。虽然联邦学习(FL)已经形成示范培训框架,无需直接数据共享和交换,但有效地模拟复杂的时空依赖,以提高预测能力,这仍然是一个尚未解决的问题。另一方面,最先进的节点空预测模型需要不受限制地获取数据,忽视数据共享方面的限制。为了缩小这一差距,我们提议采用一个联合的平流-时空结构 -- -- 跨北北偏偏偏偏偏偏偏偏角的图形神经网络(CNFGNNN) -- -- 明确使用基于图形神经网络(GNNN)的结构来编码基本图表结构,这要求每个节点的网络生成数据,每个节点都不受限制,忽略了对数据共享的限制。 CNFGNNNN的周期性动态运行,同时在最佳的周期性周期性预测设备上实现同步的升级,同时在Slevildrod Streal Stal Stal roal comstildal beal laction laction 工作上,在Sild sild sildaldald sild sild silding lavedal lavedaldald sild sild sild sild sildald sald 上运行运行中进行最佳的升级 工作,在Sildaldald sildaldaldaldaldaldaldaldaldaldaldaldaldald 任务上操作操作操作上操作操作操作操作操作操作操作操作上,在Sdaldald 工作任务上操作任务上操作操作任务上进行上运行,在Sdald 任务上进行上进行上操作任务上操作任务上运行,在Smdaldaldaldaldaldaldald 上进行上进行上进行上进行上运行上运行上运行上操作操作操作操作操作操作操作操作操作操作操作操作操作操作操作操作操作操作操作操作操作上进行上进行移动性平。

17
下载
关闭预览

相关内容

【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
151+阅读 · 2020年6月28日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
图表示学习Graph Embedding综述
AINLP
34+阅读 · 2020年5月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2020年4月29日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
图表示学习Graph Embedding综述
AINLP
34+阅读 · 2020年5月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员