In this paper, we propose a new approach for the time-discretization of the incompressible stochastic Stokes equations with multiplicative noise. Our new strategy is based on the classical Milstein method from stochastic differential equations. We use the energy method for its error analysis and show a strong convergence order of at most $1$ for both velocity and pressure approximations. The proof is based on a new H\"older continuity estimate of the velocity solution. While the errors of the velocity approximation are estimated in the standard $L^2$- and $H^1$-norms, the pressure errors are carefully analyzed in a special norm because of the low regularity of the pressure solution. In addition, a new interpretation of the pressure solution, which is very useful in computation, is also introduced. Numerical experiments are also provided to validate the error estimates and their sharpness.
翻译:在本文中,我们提出一个新的方法,用多倍噪音来区分无法压缩的随机斯托克斯式方程式的时间分解。我们的新战略以古典米尔斯坦法为基础,从随机差分方程式中取出。我们用能源法进行错误分析,并显示速度和压力近似的强烈趋同值最多为$1美元。证据基于对速度解决方案的新的H\"老的连续性估计。虽然速度近似误差以标准$L2$-和$H1$-诺姆估算,但由于压力解决办法的规律性很低,因此对压力错误进行了仔细分析。此外,还引入了对压力解决办法的新解释,这种解释在计算中非常有用。还提供了数值实验,以验证误差估计及其清晰度。