We consider the Virtual Element method (VEM) introduced by Beir\~ao da Veiga, Lovadina and Vacca in 2016 for the numerical solution of the steady, incompressible Navier-Stokes equations; the method has arbitrary order $k \geq 2$ and guarantees divergence-free velocities. For such discretization, we develop a residual-based a posteriori error estimator, which is a combination of standard terms in VEM analysis (residual terms, data oscillation, and VEM stabilization), plus some other terms originated by the VEM discretization of the nonlinear convective term. We show that a linear combination of the velocity and pressure errors is upper-bounded by a multiple of the estimator (reliability). We also establish some efficiency results, involving lower bounds of the error. Some numerical tests illustrate the performance of the estimator and of its components while refining the mesh uniformly, yielding the expected decay rate. At last, we apply an adaptive mesh refinement strategy to the computation of the low-Reynolds flow around a square cylinder inside a channel.
翻译:我们认为2016年Beirççao da Veiga、Lovadina和Vacca为稳定、不可压缩的导航-斯托克斯方程式的数值解决方案引入了虚拟元素方法(VEM ) ; 该方法有任意的顺序 $k\ geq 2 美元, 并保证无差异速度。 对于这种分解, 我们开发了一个基于残余的事后误差估计仪, 这是VEM分析标准术语( 重复术语、 数据振荡和 VEM 稳定性) 的组合, 加上由 VEM 分离的非线性对等术语产生的其他一些术语 。 我们显示, 速度和压力错误的线性组合由多个估量器( 可靠性) 所覆盖的上限 。 我们还设定了某些效率结果, 包括误差的下限范围。 一些数字测试可以说明估测器及其组件的性能, 同时调整中位值, 并产生预期的衰减率率。 最后, 我们应用一个调整网格改进策略, 用于在一个正方形的低Reyn导道上进行计算。