We propose a new probabilistic scheme which combines deep learning techniques with high order schemes for backward stochastic differential equations belonging to the class of Runge-Kutta methods to solve high-dimensional semi-linear parabolic partial differential equations. Our approach notably extends the one introduced in [Hure Pham Warin 2020] for the implicit Euler scheme to schemes which are more efficient in terms of discrete-time error. We establish some convergence results for our implemented schemes under classical regularity assumptions. We also illustrate the efficiency of our method for different schemes of order one, two and three. Our numerical results indicate that the Crank-Nicolson schemes is a good compromise in terms of precision, computational cost and numerical implementation.
翻译:我们提出了一个新的概率计划,将深层次学习技巧与属于龙格-库塔级的后向随机差异方程式的高顺序计划相结合,用于解决高维半线性半线性抛物线性部分差异方程式。我们的方法明显地将[2020年Hure Pham Warin]中为隐含的Euler计划引入的方法扩展至在离散时间错误方面效率更高的计划。我们在传统常规假设下为我们实施的计划设定了一些趋同结果。我们还展示了我们用于第1、第2和第3级不同方案的方法的效率。我们的数字结果表明,Crank-Nicolson计划在精确性、计算成本和数字实施方面是一个很好的折中方案。