The aim of this work is to present a parallel solver for a formulation of fluid-structure interaction (FSI) problems which makes use of a distributed Lagrange multiplier in the spirit of the fictitious domain method. The fluid subproblem, consisting of the non-stationary Stokes equations, is discretized in space by $\mathcal{Q}_2$-$\mathcal{P}_1$ finite elements, whereas the structure subproblem, consisting of the linear or finite incompressible elasticity equations, is discretized in space by $\mathcal{Q}_1$ finite elements. A first order semi-implicit finite difference scheme is employed for time discretization. The resulting linear system at each time step is solved by a parallel GMRES solver, accelerated by block diagonal or triangular preconditioners. The parallel implementation is based on the PETSc library. Several numerical tests have been performed on Linux clusters to investigate the effectiveness of the proposed FSI solver.
翻译:这项工作的目的是为流体结构互动(FSI)问题的配制提供一个平行的求解器,它利用虚构域法的精神中分布式的拉格朗乘数。流体子问题由非静止斯托克斯方程式组成,在空间中由1美元=mathcal=2$-$mathcal{P ⁇ 1$-lastcal{P ⁇ 1$的有限元素分离,而结构子问题由线性或有限的压缩弹性方程式组成,在空间中由1美元=mathcal=1$的有限元素分离。第一个顺序半不完全的有限差异方案用于时间分解。产生的线性系统由平行的GMRES解根器解决,由区块对角或三角前置器加速。平行的实施以 PETSC 库为基础。对Linux 集群进行了若干数字测试,以调查提议的FSI求解器的有效性。