This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.
翻译:本文介绍了学习高端网络嵌入(HONE)的一般框架,它来自基于网络主机的图表数据。“HONE”框架具有高度的表达性和灵活性,有许多可互换的组成部分。实验结果表明学习高端网络展示的有效性。在所有情况下,“HONE”都优于最近无法捕捉高端结构的嵌入方法,在各种网络和嵌入方法中平均相对增益19美元(最高达75美元)。