Maintaining the freshness of information in the Internet of Things (IoT) is a critical yet challenging problem. In this paper, we study cooperative data collection using multiple Unmanned Aerial Vehicles (UAVs) with the objective of minimizing the total average Age of Information (AoI). We consider various constraints of the UAVs, including kinematic, energy, trajectory, and collision avoidance, in order to optimize the data collection process. Specifically, each UAV, which has limited on-board energy, takes off from its initial location and flies over sensor nodes to collect update packets in cooperation with the other UAVs. The UAVs must land at their final destinations with non-negative residual energy after the specified time duration to ensure they have enough energy to complete their missions. It is crucial to design the trajectories of the UAVs and the transmission scheduling of the sensor nodes to enhance information freshness. We model the multi-UAV data collection problem as a Decentralized Partially Observable Markov Decision Process (Dec-POMDP), as each UAV is unaware of the dynamics of the environment and can only observe a part of the sensors. To address the challenges of this problem, we propose a multi-agent Deep Reinforcement Learning (DRL)-based algorithm with centralized learning and decentralized execution. In addition to the reward shaping, we use action masks to filter out invalid actions and ensure that the constraints are met. Simulation results demonstrate that the proposed algorithms can significantly reduce the total average AoI compared to the baseline algorithms, and the use of the action mask method can improve the convergence speed of the proposed algorithm.


翻译:在互联网上保持信息新鲜度(IOT)是一个至关重要但具有挑战性的问题。在本文中,我们研究使用多个无人驾驶航空飞行器(UAVs)的合作数据收集工作,目的是最大限度地减少信息的平均年限(AOI)。我们考虑无人驾驶航空飞行器的各种制约因素,包括运动力、能量、轨迹和避免碰撞,以便优化数据收集过程。具体地说,每个在船上能量有限的无人驾驶飞行器,从最初的位置起飞,飞过传感器节点,以便与其他无人驾驶飞行器合作收集更新数据包。无人驾驶航空飞行器必须在指定时间之后在最终目的地降落,使用非负载剩余能量,以确保它们有足够的能量完成任务。我们考虑无人驾驶航空飞行器的各种制约因素,包括运动轨迹、能量、轨迹和避免碰撞,以便优化信息收集过程。我们把多无人驾驶飞行器数据收集问题建成一个分散式部分,因为每个无人驾驶飞行器都不了解在最后目的地使用非负载剩余剩余能量,因此只能通过升级的轨迹操作来大大降低对A-RDL的升级操作。</s>

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
92+阅读 · 2022年8月2日
Arxiv
79+阅读 · 2022年7月16日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
35+阅读 · 2021年8月2日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员