项目名称: Er3+掺杂氟氧化物微晶玻璃光纤的制备及2.7 μm发光机理研究

项目编号: No.61505084

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 张料林

作者单位: 南京邮电大学

项目金额: 20万元

中文摘要: 2.7 μm光纤激光器的工作波长位于大气“透明窗口”,在军民两用具有广阔的应用前景。而目前采用的锆系氟化物掺Er3+光纤在2.7 μm处增益较低且其物化性能较差,严重阻碍了该波段光纤激光器的研究进展。本项目采用硅酸盐氟氧化物玻璃作为光纤基质来提高光纤的物化性能,通过析出CaF2纳米晶来调控Er3+周围场环境,利用CaF2纳米晶低声子能量特性来提高Er3+ 在2.7 μm处发光效率。首先,研究CaF2纳米晶尺寸、形貌及分布对Er3+ 2.7 μm发光性能影响规律,揭示其发光机理,设计优化玻璃组成并制备Er3+掺杂硅酸盐氟氧化物微晶玻璃;其次,研究拉丝工艺对CaF2纳米晶尺寸、形貌及分布的影响规律,构建其二次生长模型,优化微晶玻璃光纤拉丝工艺,通过在高温制备微晶玻璃纤芯,在低温拉丝制备在2.7 μm处具有高增益、低损耗的Er3+掺杂微晶玻璃光纤,为该波段光纤激光器的发展奠定科学依据与物质基础。

中文关键词: 稀土掺杂光纤;玻璃光纤;;光纤制备

英文摘要: 2.7 μm band is located in the transparent widow of atmosphere, thus, the fiber laser operating at this band is widely applied in the military and civil fields. Recently, Er3+-doped ZBLAN fiber is widely used for the optical gain medium of the 2.7 μm fiber laser. However, it’s lower optical gain and poorer chemical and mechanical properties seriously hinder the further development of 2.7 μm fiber laser. This project replace ZBLAN glass by oxyfluoride silicate glass-ceramics as host material to improve the physicochemical properties of the fiber, and control the surrounding field environment of Er3+ by precipitating CaF2 nanocrystals. Due to the lower maximum phonon energy of CaF2 nanocrystals, the luminescence efficiency of Er3+ can be improved. Firstly, studying the influence of the size, morphology and distribution of CaF2 nanocrystals on the 2.7 μm luminescence of Er3+ to reveal its luminescence mechanism, then design the precursor glass composition and fabricate the oxyfluoride silicate glass-ceramic. Then, studying the influence of fiber drawing technology on the size, morphology and distribution of CaF2 nanocrystals in the fibers to construct a second growth mode of CaF2 nanocrystals during the fiber drawing. Finally, optimizing the fiber drawing parameters and fabricating the glass-ceramic fibers with higher optical gain and lower loss at 2.7 μm band which has potential application prospect in the higher power and efficiency fiber laser.

英文关键词: rare earth doped fiber;glass fiber;fiber fabrication

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《6G智能轨道交通白皮书》未来移动通信论坛
专知会员服务
32+阅读 · 2022年4月14日
深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
51+阅读 · 2020年12月28日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
182+阅读 · 2020年11月23日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
致发光的你,OPPO Reno7 系列发布会
ZEALER订阅号
0+阅读 · 2021年11月24日
手把手教你,19步从石头里抠出一块CPU
新智元
0+阅读 · 2021年11月16日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
56+阅读 · 2021年5月3日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《6G智能轨道交通白皮书》未来移动通信论坛
专知会员服务
32+阅读 · 2022年4月14日
深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
51+阅读 · 2020年12月28日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
182+阅读 · 2020年11月23日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
致发光的你,OPPO Reno7 系列发布会
ZEALER订阅号
0+阅读 · 2021年11月24日
手把手教你,19步从石头里抠出一块CPU
新智元
0+阅读 · 2021年11月16日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员