A proper fusion of complex data is of interest to many researchers in diverse fields, including computational statistics, computational geometry, bioinformatics, machine learning, pattern recognition, quality management, engineering, statistics, finance, economics, etc. It plays a crucial role in: synthetic description of data processes or whole domains, creation of rule bases for approximate reasoning tasks, reaching consensus and selection of the optimal strategy in decision support systems, imputation of missing values, data deduplication and consolidation, record linkage across heterogeneous databases, and clustering. This open-access research monograph integrates the spread-out results from different domains using the methodology of the well-established classical aggregation framework, introduces researchers and practitioners to Aggregation 2.0, as well as points out the challenges and interesting directions for further research.
翻译:许多研究人员对不同领域,包括计算统计、计算几何学、生物信息学、机器学习、模式识别、质量管理、工程学、统计、金融、经济学等,都有兴趣适当整合复杂数据。 它在下列领域发挥着关键作用:综合描述数据过程或整个领域、为大致推理任务建立规则基础、就决策支持系统的最佳战略达成共识和选择、估算缺失值、数据重复和合并、不同数据库之间的记录连接以及集群。 这一开放检索研究专著利用既定的经典汇总框架的方法,将不同领域的传播结果综合起来,向研究人员和从业人员介绍2.0格格罗特,并指出进一步研究的挑战和有趣方向。