项目名称: 变分与拓扑方法对若干重要椭圆方程的应用研究
项目编号: No.11271386
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 贺小明
作者单位: 中央民族大学
项目金额: 60万元
中文摘要: 在本项目中我们首次提出一类具非常数位势的Klein-Gordon-Maxwell方程及拟线性Schr?dinger-Poisson方程,应用Ljusternik-Schnirelmann理论研究它们正解的存在性,多重性及集中性。首次应用利亚普诺夫约化方法研究Klein-Gordon-Maxwell方程多峰解的存在性。应用变分扰动方法研究Klein-Gordon-Maxwell及拟线性Schr?dinger-Poisson方程多个非平凡解的存在性。应用抛物流方法研究Toda系统径向变号解的存在性。首次提出研究具饱和效应的弱耦合Schr?dinger方程组正解的存在性、集中性及指数衰减性。应用Nehari流形方法及集中紧原则研究次线性(临界)二元Schr?dinger方程组多个正解的存在性。对于具非强制位势的二元Schr?dinger方程组,证明该方程组多个非平凡解的存在性。
中文关键词: Schrodinger-Poisson系统;Kirchhoff型方程;Schrodinger方程(组);解的存在性;变分方法
英文摘要: In this program we first pose a class of Klein-Gordon-Maxwell system with non-constant potentials and a quasilinear Schr?dinger-Poisson equation. By means of Ljusternik-Schnirelmann theory we study the existence, multiplicity and concentration behavior of positive solutions. Using the Lyapunov-Schmidt reduction method, we plan to investigate the existence of multi-bump solutions for Klein-Gordon-Maxwell system for the first time. We also study the existence of sign-changing radial solutions for Toda systems via the parabolic flow method. For a weakly coupled nonlinear Schr?dinger systems with the saturation effect, we firstly study the existence, concentration and the exponential decay of positive solutions. Applying the Nehari manifold method and concentration-compactness principle, we study the system of two Schr?dinger equations and obtain multiple positive solutions. Finally, for systems with coupling where none of the potentials are coercive, we prove the multiplicity of nontrivial solutions.
英文关键词: Schrodinger-Poisson system;Kirchhoff type equation;Schrodinger equation (system);existence of solutions;variational methods