项目名称: 强不定变分方法在若干非线性问题中的应用
项目编号: No.11301209
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 魏元鸿
作者单位: 吉林大学
项目金额: 22万元
中文摘要: 本项目主要研究强不定变分方法在若干非线性问题中的应用。具体的问题包括非线性Schr?dinger方程、Choquard-Pekar方程以及带有磁场的Schr?dinger方程。对非线性Schr?dinger方程,我们研究算子本质谱包含0的非线性问题,分别讨论超线性及渐近线性情形解的存在性及多重性。在超线性情形,我们减弱经典的Ambrosetti-Rabinowitz条件,使得结果可以应用于更一般的非线性问题。在我们的假设下,经典的(PS)条件一般不能满足,我们使用Cerami序列进行论证。此外,还将研究Choquard-Pekar方程以及带有磁场的Schr?dinger方程,分别讨论带有非局部项或者磁场的问题解的存在性及多重性。这些问题出现在电磁学,量子物理,量子化学,Bose-Einstein凝聚,等离子物理,非线性光学等应用领域,具有很好的理论意义和应用价值。
中文关键词: 变分法;临界点;强不定问题;;
英文摘要: This project is devoted to the applications of strongly indefinite variational metods in some nonlinear problems. We will study nonlinear Schr?dinger equation, Choquard-Pekar equation and Schr?dinger equation with magnetic field. For nonlinear Schr?dinger equation,we assume that 0 is contained in the spectrum of the linear operator. We discuss the superlinear case and asymptotically linear case, respectively. We obtain the existence and multiplicity of solutions for both superlinear problems and asymptotically linear problems. we weaken the classical Ambrosetti-Rabinowitz condition, so that the results can be applied to more general nonlinear problems. In our assumption, the (PS) condition can not be satisfied. We use Cerami sequence to obtain the solutions. Furthermore, we discuss the existence and multiplicity of solutions for Choquard-Pekar equation with nonlocal nonlinearities and Schr?dinger equation with magnetic fields. These problems arise in electromagnetism, quantum physics, plasma physics, quantum chemistry, Bose-Einstein condensation and nonlinear optical, with a significance of applications in these nonlinear problems.
英文关键词: variational method;critical point;strongly indefinite problem;;