The eigenvector-eigenvalue identity, formally named by Peter B. Denton, Stephen J. Parker, Terence Tao, Xining Zhang [Bull. Math. Amer. Soc., 2021], which is a basic and important identity in linear commutative algebra. In this paper, we extend the eigenvector-eigenvalue identity to the quaternion division ring, which is non-commutative. A version of eigenvector-eigenvalue identity for the quaternion matrix is established. Furthermore, we give a new method and algorithm to compute the eigenvectors from the right eigenvalues for the quaternion Hermitian matrix. A program is designed to realize the algorithm to compute the eigenvectors. An open problem ends the paper. Some examples show a good performance of the algorithm and the program.
翻译:由Peter B. Denton、Stephen J. Parker、Terence Tao、Xinning Zhang[Bull. Math. Amer. Soc., 2021]正式命名的egenverctor-eigenvaly 身份,这是线性通量代数中的一个基本和重要身份。在本文中,我们将egenverctor-eigenvaly身份扩展至四元分环,这是非混合性的。为四元制矩阵建立了一个版本的egenvictor-egenvality身份。此外,我们给出了一种新方法和算法,从四元制赫米提亚矩阵中从右边的egenvalus来计算e。设计了一个方案,目的是实现egenctors的算法。一个公开的问题结束了论文。一些例子显示了算法和程序的良好表现。