项目名称: 非线性方程中的拓扑与变分方法

项目编号: No.11171286

项目类型: 面上项目

立项/批准年度: 2012

项目学科: 数理科学和化学

项目作者: 刘笑颖

作者单位: 江苏师范大学

项目金额: 48万元

中文摘要: 本项目拟通过发展新的拓扑与变分方法,结合拓扑度理论、分歧理论、极大极小方法、指标理论、极小化方法等研究若干非线性方程,从而为拓扑度理论与变分理论的发展注入新内容、创造新思想、新方法,将在非线性分析理论与应用中有突破。本项目主要研究如下内容:1.把锥理论与格理论相结合,研究无穷维空间非线性算子的拓扑度计算,进一步丰富拓扑度的计算结果;2.把半序方法与拓扑方法相结合,研究分歧理论与非线性算子方程解的全局结构;3.把拓扑方法与变法方法相结合,研究非线性椭圆型方程、Dirac 方程、半线性薛定谔方程(组)等非线性微分方程解的存在性、多重性、解的类型、解的分析性质、几何性质、拓扑性质等。

中文关键词: 拓扑度;变分方法;非线性方程;临界点;

英文摘要:

英文关键词: topological degree;variational method;nonlinear equations;critical points;

成为VIP会员查看完整内容
1

相关内容

【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
43+阅读 · 2021年1月31日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
62+阅读 · 2020年11月14日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
26+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
DeepMind Nature发文:AI能提出和证明数学定理
学术头条
0+阅读 · 2021年12月2日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
10+阅读 · 2020年6月12日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关VIP内容
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
43+阅读 · 2021年1月31日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
62+阅读 · 2020年11月14日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
26+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
DeepMind Nature发文:AI能提出和证明数学定理
学术头条
0+阅读 · 2021年12月2日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员