第2篇文献则是对几何等变图神经网络的调研,其根据GNN中的消息传递和聚合方式将现有的方法分为三类进行介绍;
第3篇文献则是对异质图神经网络的调研。
懒人可以去下面的QQ群文件下载PDF。
论文地址:https://arxiv.org/pdf/2202.07256
摘要:
论文地址:https://arxiv.org/pdf/2202.07230
摘要:
许多科学问题都要求以几何图形的形式处理数据。与一般图形数据不同,几何图形展示了平移、旋转和/或反射的对称性。研究人员利用这种归纳偏差,开发了几何等变图神经网络(GNN),以更好地表征几何图形的几何和拓扑。尽管取得了丰硕的成果,但仍缺乏对等变GNN进展的综述,这反过来阻碍了等变GNN的进一步发展。为此,基于必要而简明的数学基础,我们根据GNN中的消息传递和聚合的表示方式,将现有的方法分为三类。我们也总结了基准和相关的数据集,以便于以后的研究,为方法学的发展和实验评估。并对未来可能的发展方向进行了展望。
论文地址:https://arxiv.org/pdf/2202.07082
摘要:
近年来,图神经网络(GNN)得到了迅速的发展,为无数的图分析任务和应用提供了便利。一般来说,大多数GNN依赖于同质性假设,即属于同一类的节点更有可能被连接。然而,作为现实世界众多场景中普遍存在的图属性,异质性(即具有不同标签的节点往往被链接)严重限制了定制同质GNN的性能。因此,GNN for Heterophilic Graphs在这个社区中得到了越来越多的关注。据我们所知,本文首次对异质图的gnn作了一个全面的综述。具体来说,我们提出了一个系统的分类法,该分类法本质上支配着现有的亲异GNN模型,并对其进行了一般性的总结和详细的分析。此外,我们总结了主流的异亲图基准,以促进稳健和公平的评估。最后,我们指出了在异亲图研究和应用方面的潜在发展方向。