项目名称: 与正交多项式相关的几个问题及其研究

项目编号: No.11471018

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 黄际政

作者单位: 北方工业大学

项目金额: 70万元

中文摘要: 本项目主要研究与正交多项式相关的函数空间及其在证明奇异积分算子的有界性和波方程的适定性上的应用,具体包括:与正交多项式相关的Hardy空间的面积积分和g-函数刻画;与正交多项式相关的BMO空间的建立及其与Hardy空间的对偶关系;与正交多项式相关的Calderon-Zygmund算子在相应的Hardy空间和BMO空间上的有界性。与正交多项式相关的T(b)定理及其在证明与正交多项式相关的奇异积分算子的有界性方面的应用。定义与正交多项式相关的Hardy-Sobolev空间并借助与正交多项式相关的Sobolev空间刻画它的性质,作为应用,我们将证明与正交多项式相关的散度-旋度引理的端点情况以及相应微分算子的平方根问题。建立与正交多项式相关的Besov空间并研究相应的波方程在上面的适定性。本研究课题属于调和分析的核心问题,对其它学科分支也具有深远影响,既具有重要的理论意义又具有比较广泛的应用前景。

中文关键词: 正交多项式;奇异积分算子;T(b)定理;Hardy-Sobolev;空间;Besov;空间

英文摘要: We will investigate function spaces associated with orthogonal polynomials and their applications in proving the boundedness of singular integral operators and well-posedness of wave equations. Including: The characterizations of Hardy spaces associated with orthogonal polynomials by area integral and g-functions; Define BMO space associated with orthogonal polynomials and prove that it is the dual space of Hardy space; The boundedness of Calderon-Zygmund operators associated with orthogonal polynomials on the Hardy spaces and BMO spaces. T(b) theorem for orthogonal polynomials and its application in the proofs of the boundedness of singular integral operators associated with orthogonal polynomials. Definition of Hardy-Sobolev spaces associated with orthogonal polynomials and the various properties of Hardy-Sobolev spaces in the spirit of Sobolev spaces associated with orthogonal polynomials, as applications, we will prove the endpoint versions of the div-curl lemma associated with orthogonal polynomials and give endpoint estimates at p = 1 for the square root of the differential operators associated with orthogonal polynomials. Define Besov spaces associated with orthogonal polynomials and study the well-posedness of wave equations on it. This research projection belongs to central problem of harmonic analysis, it also has much influence on other fields. It is very important both for theory and applications.

英文关键词: orthogonal polynomials;singular integral operators;T(b) theorem;Hardy-Sobolev spaces;Besov spaces

成为VIP会员查看完整内容
0

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
15+阅读 · 2021年12月7日
【NeurIPS 2021】类比进化算法:设计统一的序列模型
专知会员服务
15+阅读 · 2021年10月30日
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
21+阅读 · 2021年6月28日
专知会员服务
31+阅读 · 2021年6月24日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
138+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
专知会员服务
86+阅读 · 2020年8月2日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
【NeurIPS'21】从典型相关分析到自监督图表示学习
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
Softmax 函数和它的误解
极市平台
0+阅读 · 2021年10月15日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
29+阅读 · 2020年3月16日
小贴士
相关主题
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
15+阅读 · 2021年12月7日
【NeurIPS 2021】类比进化算法:设计统一的序列模型
专知会员服务
15+阅读 · 2021年10月30日
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
21+阅读 · 2021年6月28日
专知会员服务
31+阅读 · 2021年6月24日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
138+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
专知会员服务
86+阅读 · 2020年8月2日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
【NeurIPS'21】从典型相关分析到自监督图表示学习
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
Softmax 函数和它的误解
极市平台
0+阅读 · 2021年10月15日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员