Contextual embeddings, such as ELMo and BERT, move beyond global word representations like Word2Vec and achieve ground-breaking performance on a wide range of natural language processing tasks. Contextual embeddings assign each word a representation based on its context, thereby capturing uses of words across varied contexts and encoding knowledge that transfers across languages. In this survey, we review existing contextual embedding models, cross-lingual polyglot pre-training, the application of contextual embeddings in downstream tasks, model compression, and model analyses.
翻译:环境嵌入,如ELMO和BERT,超越了Word2Vec等全球文字表达方式,在一系列广泛的自然语言处理任务上取得了突破性的业绩。背景嵌入根据每个词的背景指派了一个代表,从而捕捉了不同背景中词汇的使用和跨语言传播的编码知识。在这次调查中,我们审查了现有的背景嵌入模式、跨语言的多语种预培训、在下游任务中应用背景嵌入、模式压缩和模型分析。