Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan \cite{LP} recently. Generalized pair weights can be used to characterize the ability of protecting information in the symbol-pair read wire-tap channels of type II. In this paper, we introduce the notion of generalized $b$-symbol weights of linear codes over finite fields, which is a generalization of generalized Hamming weights and generalized pair weights. We obtain some basic properties and bounds of generalized $b$-symbol weights which are called Singleton-like bounds for generalized $b$-symbol weights. As examples, we calculate generalized weight matrices for simplex codes and Hamming codes. We provide a necessary and sufficient condition for a linear code to be a $b$-symbol MDS code by using the generator matrix and the parity check matrix of this linear code. Finally, a necessary and sufficient condition of a linear isomorphism preserving $b$-symbol weights between two linear codes is obtained. As a corollary, we get the classical MacWilliams extension theorem when $b=1$.
翻译:线性代码的普通对式权重是刘氏和潘氏 ⁇ {LP}最近引入的最小符号-皮重的概略。一般对式权重可用于描述二类符号-皮读线纹通道中信息保护能力的特点。在本文中,我们引入了对有限字段的线性代码普遍美元比值比值重量的概念,即对通用含汞重量和普通对式权重的概略。我们获得了一些基本属性和界限的通用标本-符号重量,即通用标本-符号重量。我们用普通标本-符号重量来计算普通标本-符号重量。举例来说,我们计算简单代码和Hamming代码的通用重量矩阵。我们利用发电机矩阵和这一线性代码的对等式检查矩阵为线性代码提供了一个必要和充分的条件。最后,我们获得了在两个直线性代码之间保存美元比值比值重量的直线性直线性特征的必要和充分条件。作为必然结果,我们获得了古典的MacWilliam1。当我们获得了两个直线性代码的扩展结果时,我们得到了一个必要和充分的条件。