A variety of contextualised language models have been proposed in the NLP community, which are trained on diverse corpora to produce numerous Neural Language Models (NLMs). However, different NLMs have reported different levels of performances in downstream NLP applications when used as text representations. We propose a sentence-level meta-embedding learning method that takes independently trained contextualised word embedding models and learns a sentence embedding that preserves the complementary strengths of the input source NLMs. Our proposed method is unsupervised and is not tied to a particular downstream task, which makes the learnt meta-embeddings in principle applicable to different tasks that require sentence representations. Specifically, we first project the token-level embeddings obtained by the individual NLMs and learn attention weights that indicate the contributions of source embeddings towards their token-level meta-embeddings. Next, we apply mean and max pooling to produce sentence-level meta-embeddings from token-level meta-embeddings. Experimental results on semantic textual similarity benchmarks show that our proposed unsupervised sentence-level meta-embedding method outperforms previously proposed sentence-level meta-embedding methods as well as a supervised baseline.


翻译:国家语言方案社区提出了各种背景语言模型,这些模型经过培训,以产生多种神经语言模型(NLMS),在不同的组合中产生多种神经语言模型(NLMS),但不同的NLMS报告了下游NLP应用程序在用作文本表述时的不同性能水平。我们提出了一个句级混合学习方法,该方法采用独立培训背景语言嵌入模型,并学习一个内嵌的句子,保留输入源NLMS的互补优势。我们建议的方法不受监督,而且不与特定的下游任务挂钩,这使得所学的元组成原则上适用于需要判刑表述的不同任务。具体地说,我们首先预测单个NLMS公司获得的象征性级嵌入,并学习关注度,表明源嵌入到其象征性水平元集成的源的贡献。接下来,我们采用平均值和最大程度的集合,从象征性的元组装组装中产生句级的元组装。关于语系文本的实验结果显示,我们提议的未加固的元模级嵌制前的元模制的元模集制方法显示我们提议的未经修正的元模制的元模制的元模制的元模制的元模制的元模方法。

0
下载
关闭预览

相关内容

【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
10+阅读 · 2018年3月22日
Arxiv
23+阅读 · 2017年3月9日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员