Tensor PCA is a stylized statistical inference problem introduced by Montanari and Richard to study the computational difficulty of estimating an unknown parameter from higher-order moment tensors. Unlike its matrix counterpart, Tensor PCA exhibits a statistical-computational gap, i.e., a sample size regime where the problem is information-theoretically solvable but conjectured to be computationally hard. This paper derives computational lower bounds on the run-time of memory bounded algorithms for Tensor PCA using communication complexity. These lower bounds specify a trade-off among the number of passes through the data sample, the sample size, and the memory required by any algorithm that successfully solves Tensor PCA. While the lower bounds do not rule out polynomial-time algorithms, they do imply that many commonly-used algorithms, such as gradient descent and power method, must have a higher iteration count when the sample size is not large enough. Similar lower bounds are obtained for Non-Gaussian Component Analysis, a family of statistical estimation problems in which low-order moment tensors carry no information about the unknown parameter. Finally, stronger lower bounds are obtained for an asymmetric variant of Tensor PCA and related statistical estimation problems. These results explain why many estimators for these problems use a memory state that is significantly larger than the effective dimensionality of the parameter of interest.
翻译:Montanari 和 Richard 为研究从高阶时数中估算未知参数的计算困难, 蒙塔纳里 和 理查德 引入了 坦索· 常设仲裁院, 以研究从高阶时数中估算未知参数的计算难度。 与矩阵对应方不同, 坦索· 常设仲裁院 展示了一个统计- 计算差距, 即, 抽样规模制度, 问题在于信息- 理论可以溶解, 但推测是计算硬的。 本文在Tensor CC 的内存约束算法运行时, 给出了较低的计算界限。 这些下界限指定了数据样本通过次数、 样本大小和任何成功解决 Tensor 常设仲裁院的算法所需的记忆之间的权衡。 虽然较低界限并不排除多时算法, 但是它们确实意味着, 许多常用的算法, 如梯度下降和权力方法, 当样本规模不够大时, 就必须有更高的计算值值值值。 非加萨西 构件分析也获得了相似的下限, 一个统计估计问题组, 其统计估计组的类别中, 最低级的统计变式的模型最终没有多少次的计算结果。