项目名称: 带粗糙系数的高阶微分算子的若干研究
项目编号: No.11301203
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 邓清泉
作者单位: 华中师范大学
项目金额: 22万元
中文摘要: Hardy空间理论与Riesz变换是调和分析研究的核心内容。近十几年来,与一般微分算子相连的Hardy空间理论和Riesz变换的有界性成为调和分析和微分算子交叉领域中重要的研究对象。本项目考虑了与带不光滑系数的高阶算子相连的函数空间理论和Riesz变换的有界性,主要包括如下三个方面:研究与高阶椭圆算子相连的BMO空间与VMO空间理论,包括其等价刻画以及与Hardy空间的对偶关系;考虑与带强次临界位势的高阶Schrodinger算子相连的Hardy空间理论,分别引入与之相连的原子Hardy空间和分子Hardy空间以及由该算子生成的面积积分定义的Hardy空间,证明它们是等价的;对于带强次临界位势的高阶Schrodinger算子,我们将考虑与之相连的Riesz变换的有界性以及他类型的次线性算子如与之相连的极大函数,面积积分和平方函数的有界性。
中文关键词: 高阶椭圆算子;高阶薛定谔算子;函数空间;Riesz变换;
英文摘要: The Hardy spaces theory and the Riesz transforms play important rolls in the study of harmonic analysis. In recent years, the Hardy spaces and the boundedness of Riesz transforms associated to operators were actively studied. In this project, we focus on the study of Hardy spaces and the boundedness of Riesz transforms associated to higher order operators with nonsmooth coefficients. Specifically, the following three topics will be detailed investigated: Firstly, we will consider the BMO space and the VMO space associated to higher order elliptic operators, including their equivalent characterizations and the duality with the Hardy space. Secondly, we will study the Hardy spaces theory associated to higher order Schrodinger operators, by introducing the molecular Hardy spaces and the atomic Hardy spaces, we will show that they actually equivalent to the Hardy spaces defined via area integral. Finally, we will consider the boundedness of Riesz transform, maximal function, square function and area integral associated to higher order Schrodinger operators with strongly subcritical potentials.
英文关键词: higher order elliptic operators;higher order Schrodinger operators;function spaces;Riesz transforms;