Missing node attributes is a common problem in real-world graphs. Graph neural networks have been demonstrated power in graph representation learning while their performance is affected by the completeness of graph information. Most of them are not specified for missing-attribute graphs and fail to leverage incomplete attribute information effectively. In this paper, we propose an innovative node representation learning framework, Wasserstein Graph Neural Network (WGNN), to mitigate the problem. To make the most of limited observed attribute information and capture the uncertainty caused by missing values, we express nodes as low-dimensional distributions derived from the decomposition of the attribute matrix. Furthermore, we strengthen the expressiveness of representations by developing a novel message passing schema that aggregates distributional information from neighbors in the Wasserstein space. We test WGNN in node classification tasks under two missing-attribute cases on both synthetic and real-world datasets. In addition, we find WGNN suitable to recover missing values and adapt them to tackle matrix completion problems with graphs of users and items. Experimental results on both tasks demonstrate the superiority of our method.
翻译:缺少的节点属性是真实世界图中常见的问题。 图形神经网络在图形表达学中表现出了力量,而其性能则受到图形信息完整性的影响。 它们大多没有为缺失的属性图表指定具体内容,也没有有效地利用不完整的属性信息。 在本文中,我们提议了一个创新的节点表达学习框架,即瓦塞斯坦图形神经网络(WGNN),以缓解问题。 为了最大限度地利用观察到的有限属性信息,并捕捉缺失值造成的不确定性,我们把节点表述为因属性矩阵变形而产生的低维度分布。 此外,我们通过开发新颖的信息,将瓦塞斯坦空间邻居的分布信息汇总在一起,我们加强了表达的清晰度。我们在合成和真实世界数据集两个缺失的归因案例的节点分类任务中测试了WGNNN。 此外,我们发现WGNN适合恢复缺失的值,并用用户和物品的图表来调整它们处理矩阵完成问题。 实验结果显示了我们方法的优越性。