项目名称: 含超临界指数的非线性椭圆方程的变分及发展方程动力系统问题研究

项目编号: No.11401100

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 钟延生

作者单位: 福建师范大学

项目金额: 22万元

中文摘要: 本项目拟研究含超临界指数的非线性椭圆方程的变分问题,包括考虑全局极小解、局部极小解、正解、变号解的存在性和多重性及相应特征问题的正解;研究含超临界的非线性发展方程的动力系统问题,包括探讨全局吸引子、指数吸引子的存在性,吸引子的维数估计;研究将变分问题所得结果探讨吸引子的结构。本项目是国际上解决含超临界指数的非线性椭圆方程与动力系统中的核心与前沿问题之一。

中文关键词: 超临界指数;非线性方程;变分;动力系统;

英文摘要: The variational problem for elliptic equation with supercritical exponent was considered here: containing the existence and multipy of global minimal solution, local minimal solution, positive solution, sign-changing solution, and the existence and multip

英文关键词: supercritical exponent;nonlinear equation;variation;ynamical system;

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】神经分段常时滞微分方程
专知会员服务
34+阅读 · 2022年1月14日
专知会员服务
14+阅读 · 2021年10月9日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
67+阅读 · 2021年1月28日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
62+阅读 · 2020年11月14日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
26+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
神经网络的基础数学,95页pdf
专知
27+阅读 · 2022年1月23日
【AAAI 2022】神经分段常时滞微分方程
专知
2+阅读 · 2022年1月14日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
酒鬼漫步的数学——随机过程 | 张天蓉专栏
知识分子
10+阅读 · 2017年8月13日
【基础数学】- 01
遇见数学
20+阅读 · 2017年7月25日
基于LDA的主题模型实践(二 )MCMC--吉布斯采样
机器学习深度学习实战原创交流
25+阅读 · 2015年9月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
小贴士
相关VIP内容
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
34+阅读 · 2022年1月14日
专知会员服务
14+阅读 · 2021年10月9日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
67+阅读 · 2021年1月28日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
62+阅读 · 2020年11月14日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
26+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
神经网络的基础数学,95页pdf
专知
27+阅读 · 2022年1月23日
【AAAI 2022】神经分段常时滞微分方程
专知
2+阅读 · 2022年1月14日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
酒鬼漫步的数学——随机过程 | 张天蓉专栏
知识分子
10+阅读 · 2017年8月13日
【基础数学】- 01
遇见数学
20+阅读 · 2017年7月25日
基于LDA的主题模型实践(二 )MCMC--吉布斯采样
机器学习深度学习实战原创交流
25+阅读 · 2015年9月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员