Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.
翻译:知识图表捕捉了各实体之间的相互关联信息,它们代表着一个有吸引力的结构化信息源,可以用于推荐系统。然而,现有的推荐引擎使用手工设计功能,使用知识图表,不允许端到端培训,或提供不易缩放。在这里,我们提议了知识图表演变网络(KGCN),这是一个端到端的训练框架,利用知识图表所捕捉的项目关系提供更好的建议。从概念上看,KGCN计算用户特定项目的嵌入,首先应用一种可训练功能,为特定用户确定重要的知识图表关系,然后将知识图表转换成用户专用的加权图表。然后,KGCN应用一个图变动神经网络,通过传播和汇总知识图表周边信息来计算项目的嵌入。此外,为了提供更好的导出偏移偏移, KGCN 使用标签(LS) 平滑度(LS), 提供边缘重量的正规化,我们证明它相当于在图表上贴标签的传播计划。最后,我们统一了KGCN和LS(LS) 正规化, 并展示一个可缩缩微缩缩的模型, 显示高缩的KLS-CS- sLS(K) 的模型。