Generalized linear mixed models are useful in studying hierarchical data with possibly non-Gaussian responses. However, the intractability of likelihood functions poses challenges for estimation. We develop a new method suitable for this problem, called imputation maximization stochastic approximation (IMSA). For each iteration, IMSA first imputes latent variables/random effects, then maximizes over the complete data likelihood, and finally moves the estimate towards the new maximizer while preserving a proportion of the previous value. The limiting point of IMSA satisfies a self-consistency property and can be less biased in finite samples than the maximum likelihood estimator solved by score-equation based stochastic approximation (ScoreSA). Numerically, IMSA can also be advantageous over ScoreSA in achieving more stable convergence and respecting the parameter ranges under various transformations such as nonnegative variance components. This is corroborated through our simulation studies where IMSA consistently outperforms ScoreSA.
翻译:通用线性混合模型有助于研究等级数据(可能不是Gausian的答复),但是,可能性功能的可选性对估算提出了挑战。我们开发了一种适合这一问题的新方法,称为估算最大化随机近似(IMSA)。对于每一次迭代,IMSA首先估算潜在的变量/随机效应,然后对全部数据可能性进行最大化,最后将估计数移向新的最大化,同时保留前值的一部分。IMSA的限制点满足了自我一致性特性,在有限的样本中,其偏差可能小于通过基于分等的相近(ScoreSA)的分数计算所解决的最大可能性估计值。从数字上看,IMSA还有利于在非负差异组成部分等各种变异下实现更稳定的趋同并尊重分数范围。通过我们的模拟研究证实了这一点,IMSA在这种模拟研究中一贯优于ScardSA。