项目名称: 连续时间马氏决策过程均值-方差优化问题的研究
项目编号: No.11201182
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 叶柳儿
作者单位: 暨南大学
项目金额: 22万元
中文摘要: 本项目主要研究连续时间马氏决策过程的均值-方差优化问题。拟解决以下三个问题:1)针对Markowitz均值-方差模型,在期望折扣收益最大化或等于某个给定常数的前提下,寻找相应方差最小的策略。通过分析其与折扣准则的理论关系,得到均值-方差最优策略存在的条件,进而得到其计算方法;2)通过建立受约束连续时间MDP均值-方差模型,在期望收益不小于给定常数的条件下,寻找使方差达到最小的策略。运用受约束模型的已有理论结果,分析当前准则下最优策略的存在性以及它的计算方法;3)利用风险中立动态规划新方法,处理连续时间MDP中的折扣、平均和均值-方差最优化问题,建立最优策略存在性,进一步分析相应的计算方法。另外,将分析该方法与现有理论方法的区别和联系,从而扩大MDP的应用范围。以上三个问题的研究均是首次的。
中文关键词: 均值-方差准则;受约束的马氏决策过程;Markov对策;最优性条件;最优策略
英文摘要: In this project, we consider a series of mean-variance optimality problems for continuous-time Markov decision processes (MDPs). The main object is to obtain some policies that minimize the variance over a set of all policies with a given expected reward, which satisfies suitable conditions. We are planning to solve the three following questions: 1) For Markowitz mean-variance models, we aim to find a policy that minimizes the variance over a set of all policies with a optimal/given expected reward. Using the conditional expectation and Markov property we can prove that the mean-variance optimality problem can be transformed to an equivalent discounted optimality problem, and establish the existence of mean-variance optimal policies. Furthermore, we will analysis their computational methods. 2) We establish the constrained continuous-time MDPs models with mean-variance optimality criterion. Using the theory of constrained continuous-time MDPs, we will find the condition of existence of constrained mean-variance optimal policies and their computational methods. 3) We first introduce the concept of risk-averse dynamic programming, and employ the Markov risk measures. Using these new tools,we will establish the existence of discounted/average/mean-variance optimal policies. Moreover, we will analysis the differenc
英文关键词: Mean-variance criterion;Constrained Markov decision processes;Markov games;Optimality conditions;Optimal policy