Stochastic evolution equations with compensated Poisson noise are considered in the variational approach with monotone and coercive coefficients. Here the Poisson noise is assumed to be time-homogeneous with $\sigma$-finite intensity measure on a metric space. By using finite element methods and Galerkin approximations, some explicit and implicit discretizations for this equation are presented and their convergence is proved. Polynomial growth condition and linear growth condition are assumed on the drift operator, respectively for the implicit and explicit schemes.
翻译:在采用单调和强制系数的变异方法中,考虑了具有补偿性波瓦森噪音的斯托琴进化方程式。在这里,普瓦森噪音被假定为具有时间共性,在公尺空间上采用$\gma$-无限强度测量。通过使用有限元素法和Galerkin近似法,提出了这一方程式的一些明确和隐含的分解,并证明了它们的趋同。对于隐含和直露的计划,对漂移操作者分别假定了多元增长条件和线性增长条件。