This paper explores connections between margin-based loss functions and consistency in binary classification and regression applications. It is shown that a large class of margin-based loss functions for binary classification/regression result in estimating scores equivalent to log-likelihood scores weighted by an even function. A simple characterization for conformable (consistent) loss functions is given, which allows for straightforward comparison of different losses, including exponential loss, logistic loss, and others. The characterization is used to construct a new Huber-type loss function for the logistic model. A simple relation between the margin and standardized logistic regression residuals is derived, demonstrating that all margin-based loss can be viewed as loss functions of squared standardized logistic regression residuals. The relation provides new, straightforward interpretations for exponential and logistic loss, and aids in understanding why exponential loss is sensitive to outliers. In particular, it is shown that minimizing empirical exponential loss is equivalent to minimizing the sum of squared standardized logistic regression residuals. The relation also provides new insight into the AdaBoost algorithm.


翻译:本文探讨了基于差值的损失功能与二进制分类和回归应用的一致性之间的联系,表明基于二进制分类/回归应用的大量基于差值的损失功能导致估算的分数相当于以偶数函数加权的日志相似值计分数。对符合(一致)损失功能作了简单描述,从而可以直接比较各种损失,包括指数损失、后勤损失和其他损失。定性用于为后勤模式建立一个新的赫伯型损失功能。计算出差值与标准化后勤回归残留物之间的简单关系,表明所有基于差值的损失都可视为平式标准化后勤回归残余物的损失功能。这种关系为指数值和后勤损失提供了新的直接解释,有助于理解指数损失为何对外围物具有敏感性。特别是,经验表明,尽量减少经验性指数损失等于最大限度地减少标准化后勤回归残余物的总和。这种关系还为AdaBoost算法提供了新的洞察力。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月20日
Core-Elements for Classical Linear Regression
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员