In this paper, we consider the regularized multi-response regression problem where there exists some structural relation within the responses and also between the covariates and a set of modifying variables. To handle this problem, we propose MADMMplasso, a novel regularized regression method. This method is able to find covariates and their corresponding interactions, with some joint association with multiple related responses. We allow the interaction term between covariate and modifying variable to be included in a (weak) asymmetrical hierarchical manner by first considering whether the corresponding covariate main term is in the model. For parameter estimation, we develop an ADMM algorithm that allows us to implement the overlapping groups in a simple way. The results from the simulations and analysis of a pharmacogenomic screen data set show that the proposed method has an advantage in handling correlated responses and interaction effects, both with respect to prediction and variable selection performance.


翻译:在本文中,我们考虑存在响应内部结构关系以及响应与一组修改变量之间相关联的正则化多响应回归问题。为应对这个问题,我们提出了MADMMplasso,一种新颖的正则化回归方法。此方法能够寻找具有多个相关响应的协变量及其相应交互,我们允许协变量和修改变量之间的交互项以弱对称分层方式包含在模型中,并首先考虑相应协变量主要项是否在模型中的因素。为得到参数估计,我们开发了一种ADMM算法来实现重叠组的简化方式。对于模拟结果和药物基因组扫描数据集的分析结果表明,所提出的方法在处理相关响应和交互效应方面具有优势,无论是在预测还是变量选择性能方面。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【干货书】工程和科学中的概率和统计,
专知会员服务
58+阅读 · 2022年12月24日
【ICDM2022教程】多目标优化与推荐,173页ppt
专知会员服务
46+阅读 · 2022年12月24日
专知会员服务
44+阅读 · 2020年12月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月8日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员