这份手册最大的特点就是包含许多关于机器学习的经典公式和图表,有助于您快速回忆有关机器学习的知识点。非常适合那些正在准备与机器学习相关的工作面试的人。
项目地址: https://github.com/soulmachine/machine-learning-cheat-sheet
该手册虽然只有 135 页,但麻雀虽小五脏俱全,包含了 28 个主题内容,目录如下:
- Introduction
- Probability
- Generative models for discrete data
- Gaussian Models
- Bayesian statistics
- Frequentist statistics
- Linear Regression
- Logistic Regression
- Generalized linear models and the exponential family
- Directed graphical models(Bayes nets)
- Mixture models and the EM algorithm
- Latent linear models
- Sparse linear models
- Kernels
- Gaussian processes
- Adaptive basis function models
- Hidden markov Model
- State space models
- Undirected graphical models(Markov random fields)
- Exact inference for graphical models
- Variational inference
- More variational inference
- Monte Carlo inference
- Markov chain Monte Carlo (MCMC)inference
- Clustering
- Graphical model structure learning
- Latent variable models for discrete data
- Deep learning