The support vector machines (SVM) is a powerful classifier used for binary classification to improve the prediction accuracy. However, the non-differentiability of the SVM hinge loss function can lead to computational difficulties in high dimensional settings. To overcome this problem, we rely on Bernstein polynomial and propose a new smoothed version of the SVM hinge loss called the Bernstein support vector machine (BernSVM), which is suitable for the high dimension $p >> n$ regime. As the BernSVM objective loss function is of the class $C^2$, we propose two efficient algorithms for computing the solution of the penalized BernSVM. The first algorithm is based on coordinate descent with maximization-majorization (MM) principle and the second one is IRLS-type algorithm (iterative re-weighted least squares). Under standard assumptions, we derive a cone condition and a restricted strong convexity to establish an upper bound for the weighted Lasso BernSVM estimator. Using a local linear approximation, we extend the latter result to penalized BernSVM with non convex penalties SCAD and MCP. Our bound holds with high probability and achieves a rate of order $\sqrt{s\log(p)/n}$, where $s$ is the number of active features. Simulation studies are considered to illustrate the prediction accuracy of BernSVM to its competitors and also to compare the performance of the two algorithms in terms of computational timing and error estimation. The use of the proposed method is illustrated through analysis of three large-scale real data examples.
翻译:支持向量机(SVM)是用于二分类的强大分类器,以提高预测精度。然而,SVM铰链损失函数的非可微性可能导致在高维设置中出现计算困难。为了克服这个问题,我们依赖于Bernstein多项式,并提出了一种新的平滑版本的SVM铰链损失,称为Bernstein支持向量机(BernSVM),适用于高维$p>>n$情况。由于BernSVM目标损失函数属于$C^2$类,我们提出了两种计算惩罚BernSVM解的高效算法。第一种算法基于带有极大化-主宰(MM)原则的坐标下降法,第二种算法是IRLS类型的算法(迭代加权最小二乘法)。在标准假设下,我们导出锥条件和受限强凸性,为加权Lasso BernSVM估计器建立了一个上界。利用局部线性逼近,将后一结果扩展到具有非凸惩罚SCAD和MCP的惩罚BernSVM。我们的上界具有高概率并实现了一阶$\sqrt{s\log(p)/n}$速率,其中$s$是活跃特征的数量。我们进行模拟研究来说明BernSVM的预测精度与其竞争对手的比较,以及在计算时间和误差估计方面比较两种算法的性能。所提出的方法的使用通过分析三个大型实际数据示例来说明。