项目名称: 仿射流形上的非线性分析

项目编号: No.10871136

项目类型: 面上项目

立项/批准年度: 2009

项目学科: 金属学与金属工艺

项目作者: 贾方

作者单位: 四川大学

项目金额: 20万元

中文摘要: 本项目研究仿射流形的几何与拓扑和仿射流形上的非线性偏微分方程。它包括: (1) 仿射流形上其位势满足 Monge- Ampere 方程的Kahler - 仿射度量; (2)仿射流形上的Einstein-Kahler 仿射度量和Extremal-Kahler 仿射度量; (3)具有平行体积元的仿射流形和具有奇点的仿射流形; (4)Euclidean完备的具有仿射常平均曲率曲面的分类和完备的三维仿射极大超曲面的研究。 本项目的特色在于将辛拓扑中的bubbling分析技巧应用于以上几个问题的研究。其中问题(1)及(3)在 mirror对称的研究中具有特别的重要性;Extremal-Kahler 度量是复几何中一直受到人们关注的重要问题;问题(1),(2)及(4)的研究都涉及到复杂的非线性偏微分方程,这些问题的研究不仅促进了整体微分几何学的发展,而且对非线性偏微分方程的发展也具有重要的意义。

中文关键词: 仿射流形;非线性分析;mirror对称;偏微分方程;几何与拓扑

英文摘要: In this project we study the geometry and topological structure of affine manifolds and nonlinear partial differential equations on affine manifolds . It includes: (1) Kahler affine metrics on affine manifolds, whose potential in addition satisfies the Monge-Ampere equation; (2) Einstein Kalher metrics and Extremal Kahler metrics on affine manifolds; (3) affine manifolds with parallel volume and affine manifolds with singularities; (4)the classification of Euclidean complete affine surfaces with constant affine mean curvature and the study of complete three dimensional affine maximal hypersurfaces. The main method we use to study these problems is bubbling analysis technique. The study of (1) and (3) should be especially important in the study of mirror symmetry; Extremal Kahler metric is an important problem in complex geometry; the study of (1),(2) and (3) will lead to the study of nonlinear partial differential equations.

英文关键词: affine manifolds; nonlinear analysis; mirror symmetry; partial differential equations; geometry and topology.

成为VIP会员查看完整内容
0

相关内容

【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
65+阅读 · 2021年12月29日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
31+阅读 · 2021年6月24日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
专知会员服务
84+阅读 · 2020年12月5日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
神经网络,凉了?
PaperWeekly
0+阅读 · 2022年3月16日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
超图学习综述: 算法分类与应用分析
专知
0+阅读 · 2022年2月1日
重新思考图卷积网络:GNN只是一种滤波器
新智元
28+阅读 · 2019年6月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
小贴士
相关主题
相关VIP内容
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
65+阅读 · 2021年12月29日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
31+阅读 · 2021年6月24日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
专知会员服务
84+阅读 · 2020年12月5日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员