Functional quantile regression (FQR) is a useful alternative to mean regression for functional data as it provides a comprehensive understanding of how scalar predictors influence the conditional distribution of functional responses. In this article, we study the FQR model for densely sampled, high-dimensional functional data without relying on parametric or independent assumptions on the residual process, with the focus on statistical inference and scalable implementation. This is achieved by a simple but powerful distributed strategy, in which we first perform separate quantile regression to compute $M$-estimators at each sampling location, and then carry out estimation and inference for the entire coefficient functions by properly exploiting the uncertainty quantification and dependence structure of $M$-estimators. We derive a uniform Bahadur representation and a strong Gaussian approximation result for the $M$-estimators on the discrete sampling grid, serving as the basis for inference. An interpolation-based estimator with minimax optimality is proposed, and large sample properties for point and simultaneous interval estimators are established. The obtained minimax optimal rate under the FQR model shows an interesting phase transition phenomenon that has been previously observed in functional mean regression. The proposed methods are illustrated via simulations and an application to a mass spectrometry proteomics dataset.
翻译:函数分位数回归(FQR)是处理函数数据的有用替代方法,因为它提供了标量预测变量如何影响函数响应条件分布的全面理解。在本文中,我们研究密集采样的高维函数数据的FQR模型,而不依赖于残差过程的参数化或独立假设,重点是统计推断和可扩展的实现。这是通过一种简单但强大的分布策略实现的,其中我们首先执行分别分位数回归,以在每个采样位置计算$M$-估计量,然后通过适当地利用$M$-估计量的不确定性量化和依赖结构来对整个系数函数进行估计和推断。我们为离散采样网格上的$M$-估计推导了统一的Bahadur表示和强Gaussian近似结果,作为推断的基础。提出了一种基于插值的估计量,并建立了点估计和同时区间估计的大样本性质。在FQR模型下获得的最小化最优率显示了在函数均值回归中先前观察到的有趣的相变现象。仿真实验和对质谱蛋白质组学数据集的应用示例证明了所提出的方法。