We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of $\mathbb{R}$. An order-$1$ autoregressive model in this context is to be understood as a Markov chain, where one specifies a certain structure (regression) for the one-step conditional Fr\'echet mean with respect to a natural probability metric. We construct and explore different models based on iterated random function systems of optimal transport maps. While the properties and interpretation of these models depend on how they relate to the iterated transport system, they can all be analyzed theoretically in a unified way. We present such a theoretical analysis, including convergence rates, and illustrate our methodology using real and simulated data. Our approach generalises or extends certain existing models of transportation-based regression and autoregression, and in doing so also provides some additional insights on existing models.
翻译:我们考虑了在美元\ mathbb{R} 的紧凑间隔下定义和安装概率分布的自动递减时间序列模型的问题。 在这方面,一个顺序-$$的自动递减模型应被理解为一个Markov链条,在这个链条中,一个链条为自然概率衡量尺度的一步条件Fr\'echet 指的某种结构(递减)。我们根据最佳运输图的迭代随机功能系统,构建和探索不同的模型。虽然这些模型的特性和解释取决于它们与迭代运输系统的关系,但它们都可以在理论上进行统一分析。我们提出这种理论分析,包括趋同率,并用真实和模拟的数据说明我们的方法。我们的方法是概括或扩展某些基于运输的回归和自动递增模式,并在这样做时,还对现有模型提供了一些额外的见解。</s>