We introduce and analyze a new finite-difference scheme, relying on the theta-method, for solving monotone second-order mean field games. These games consist of a coupled system of the Fokker-Planck and the Hamilton-Jacobi-Bellman equation. The theta-method is used for discretizing the diffusion terms: we approximate them with a convex combination of an implicit and an explicit term. On contrast, we use an explicit centered scheme for the first-order terms. Assuming that the running cost is strongly convex and regular, we first prove the monotonicity and the stability of our theta-scheme, under a CFL condition. Taking advantage of the regularity of the solution of the continuous problem, we estimate the consistency error of the theta-scheme. Our main result is a convergence rate of order $\mathcal{O}(h^r)$ for the theta-scheme, where $h$ is the step length of the space variable and $r \in (0,1)$ is related to the H\"older continuity of the solution of the continuous problem and some of its derivatives.
翻译:我们引入并分析一种新的有限差异方案, 依靠该方法, 以解决单调第二等中场游戏。 这些游戏由Fokker- Planck 和 Hamilton- Jacobi- Bellman 等式的组合系统组成。 我们使用该方法将扩散术语分解: 我们用一个隐含和明确术语的相近组合来比较它们。 相反, 我们使用一个明确的第一级条件中央方案。 假设运行成本是强烈的连接和常规, 我们首先在 CFL 条件下证明我们方位的单调和稳定性。 我们利用持续问题解决方案的规律性, 我们估计该方位的一致性错误。 我们的主要结果就是该方位的组合率 $\ mathcal{O} (här) 。 $h是空间变量的步长, $r\ in ( 0, 1) 和 $r\ $ 有关其连续和 版本的解决方案的 H\\\\ old 的连续性。