In this work we present a rather general approach to approximate the solutions of nonlocal conservation laws. Thereby, we approximate in a first step the nonlocal term with an appropriate quadrature rule applied to the spatial discretization. Then, we apply a numerical flux function on the reduced problem. We present explicit conditions which such a numerical flux function needs to fulfill. These conditions guarantee the convergence to the weak entropy solution of the considered model class. Numerical examples validate our theoretical findings and demonstrate that the approach can be applied to further nonlocal problems.
翻译:在这项工作中,我们提出了一个相当笼统的方法来接近非本地养护法的解决办法。因此,我们首先将非本地术语与适用于空间分解的适当二次规则相近。然后,我们对减少的问题应用一个数字通量函数。我们提出了这种数字通量函数需要满足的明确条件。这些条件保证了与所考虑的模型类的微弱酶解决方案的趋同。数字实例证实了我们的理论结论,并表明该方法可以适用于进一步的非本地问题。